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ABSTRACT 

We strengthen Felner Independence (defined in an earlier paper) to a crite- 

rion (which we call Very Weak Bernoulli) and prove that this new condition 

is equivalent to Finitely Determined. 

0. In troduct ion  

Donald Ornstein and Benjamin Weiss [O-W], in collaboration with Jacob Feld- 

man and Dan Rudolph have generalized much of classical ergodic theory to ac- 

tions of amenable groups. However, there is one important part of the theory 

which has not been extended: the Very Weak Bernoulli (VWB) criterion. In the 

original theory, this condition was useful in verifying that many processes that 

arise are, in fact, Bernoulli. For examples, see [O, pp. 115-125] and [Sh, pp. 104- 

105]. In addition, the thesis of J. Steif ([Stl] and [St2]) contains applications of 

the VWB criterion to interacting particle systems. 

For Z-actions, the VWB condition was developed in by Ornstein in [O]. In 

[O-W-3], it was shown by Ornstein and Weiss that VWB is equivalent to Finitely 

Determined. 

As it turns out, VWB is very hard to define in a general amenable group, 

because the definition for Z-actions relies so heavily on a concept of the "past"; 

in the case of the integers, the "past" refers to the negative integers. Even for 

Z d, a notion of the past has been developed (see [K-W]). For a general amenable 

group, however, it is not at all clear what the correct definition is. 

In [A], we avoided much of this difficulty by considering a stronger condition 

which we named "F01ner Independence". Even for Z-actions, however, Folner 
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Independence implies but is not implied by Finitely Determined (see [O-W-2]). It 

is, however, suggestive of another criterion. It is the point of this work that this 

other definition (Definition 3.1), which we call Very Weak Bernoulli, is equivalent 

to Finitely Determined. 

In [A-S], an application of VWB for amenable groups will be given. We will 

show that an attractive interacting particle system (with the usual lattice Z d 

replaced by an arbitrary discrete amenable group) is Bernoulli. 

In §1, we prove two technical lemmas needed to estimate how close quasi-filings 

are to being true tilings. Then in §2, we define closeness in entropy and finite 

distribution for finite processes, then prove (Theorem 2.8) that large but finite 

portions of a Finitely Determined process inherit a property similar to Finitely 

Determined. Finally, in §3, we give an analogue (Definition 3.1) of Very Weak 

Bernoulli for amenable groups. In Theorem 3.7, we prove, using the main result 

(Theorem 2.8) of §2, that this condition is equivalent to Bernoulli. Much of the 

proof of Theorem 3.7 is modelled on [O-W-3]. 

I would like to thank Don Ornstein for useful insights, especially the idea of 

using extremality (see (1C7) of the proof of Theorem 2.8). Jeff Steif also helped 

out by finding a simplification to an earlier definition of VWB. I would also like 

to thank the referee for many useful suggestions and for catching a serious error 

in the original version of this paper. 

1. Technica l  e s t ima te s  

We collect here some technical results. 

Recall from [A, §1] that if / is any set, then an / -p rocess  is a family of 

random variables, indexed by [, together with a grand coupling. If each variable 

takes values in {+1 , -1} ,  then we call the process a n / - s p i n  sys t em.  If G is a 

countable, discrete group then a G-process is s t a t i o n a r y  if the grand coupling is 

invariant under right translation by elements of G. (Here, G acts on {+1 , -1}  G 

by (ag)(g') = a(g' g-1).) 
We adopt some of the notation of [A, §3]. If K C G is finite and ~ > 0, then 

a finite subset F C_ G is (K,~)- invar iant  if, for all k E K, IkF/XFI/IFI < ,~. 

(Note that this does not agree with [O-W, p. 24, 1.+5].) Recall that a group G is 

a m e n a b l e  ifffor all (K, ~), there exists a (K, ~)-invariant subset of G [O-W, p. 14, 

1.-5]. A property P(F) of finite subsets F C G is said to hold for suff ic ient ly  

invar ian t  sets  if there exists a (K, 5) such that P(F) holds whenever F is 
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(K, 6)-invariant. If ~" is a collection of finite subsets of G, then we say that ~- is 

a F ¢ l n e r  fami ly  if, for every (K, 5), there exists a (K, 5)-invariant set in ~-. 

Throughout this paper, G is a countable, discrete, amenable group with iden- 

tity element e. (See [ i ,  §3] for the definition of amenab le . )  Recall from [ i ,  §3] 

that if K, F C_ G are finite subsets, and ife E F = F -1, then the F - b o u n d a r y  o f  

K is the set B ofa  E G such that FaNK ~ 0 ~ Faf'I(G\K); recall also that the F-  

in te r io r  o f  K is K \ B .  Recall [O-W, p. 21, 1.-3] that a collection AI,-- . , -4,~ C_ G 

is said to be 6-disjoint  if there exist subsets/11 C_ A1, . . .  ,Am C_ .4m such that 

p ~ q ~ .4p N .4q = 0 and such that [fi~p\.4p[ < 6lAp[, for p = 1, . . .  ,m. A collec- 

tion of subsets A1 , . . . ,  Ak is a 5-quasi- t i l ing s y s t e m  if e E A1 C_ ..- C Ak and 

if these sets di-quasi-tile G, in the sense of [O-W, p. 24]. A (%disjoint collection 

A1, . . - ,  -4m of right translates of A1, . . . ,  Ak is a 5-quasi- t i l ing o f  a finite subset 

K C_ a if IK\(A1 u . - .  u "4m)l < 51KI and if K N .4p # 0, for p = 1 , . . . ,  m. 

Complications arise since the sets -41,.. . ,-4m are not pairwise-disjoint. The el- 

ements of K lying in two of the .4ps are to be thought of as "bad" points. We 

now estimate the number of such points: 

LEMMA 1.1: Assume 0 < 5 < 1/2. Let A1 , . . . ,Ak  C_ G be a 5-quasi-tillng 

system. Let K be a t~nite subset of G and let BDRY(K) denote the union (over 

i = 1, . . . ,  k) of the (AiA.~ ~)-boundaries of K. Assume: 

(A) ]BDRY(K)I < 5IKI; and 

(B) .41,... ,.4m is a 5-quasi-tiling of K by right translates of A1,. . .  ,Ak. 

in Ap.) Let J be the set of integers 1 < p < m such that [/3pl > v~l~ipl. Then 

(C) [ K [ -  ~ [ A p i  < 45[K[; 
p = l  

(D) ~ IB,I < lO~lKI; and 
p=l 

(E) E I~,1 < ~ov~lgl. 

Proof." Let M : :  max{IAlh . . . ,  IAkl}. By (B), there exists a pairwise-disjoint 

collection of sets A~,. . . ,  Am such that, for p = 1, . . . ,  m, ~ ,  C_ A~ and 1.4,\~i~1 < 
51.Apl. Forp  = 1 , . . . , m ,  let A; := A, \A , .  Let 

m * 

p =  1 p= 1 p p =  I 
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Let 

SUMA := ~ [.4p[, SUMB := ~ I/},l. 
p=l  pml 

Because ,4, , .- . ,-4m are pairwise-disjoint, Ial = ~-~la ,  I. Further, for p = 
p=l 

1, . . .  ,m,  (1 - 6 ) l i ,  I < I i ,  I and 61 i ,  I > Ia;I. Suturing these over p, we obt~n  

m 

(I - 6)(SUMA) < ~ 1.4,1 = I i l  
p=l 

and 
m 

6(SUMA) > ~ [A;[ > IA'[. 
p=l 

Subtracting the two inequalities displayed above, we have (1 - 26)SUMA < [~'1 - 

IA*I. Now I i l -  IA*I _< Ii\A'I,  so 
(F) (1 -26)(SUMA) < [.4\A* I. 

By (B), .4 covers all but a 6-fraction of K, i.e., 

(O) (1 -6)IK I _< I i l  . 
Multiplying this by 1 - 26, we get 

(I - 36)[KI < (i - 36 + 262)IK[ _< (I - 26)lfi.l _< (I - 26)(SUMA). 

So, by (F), we have 

(H) (1 - 3 6 ) l K l  < I / \A*l .  
Fix any i, 1 < i < k. By definition of a 6-quasi-tiling system, e E Ai. Thus, 

any right translate of Ai which intersects both K and G\K must be contained in 

the (AiA[ 1 )-boundary of K. By definition of a 6-quasi-tiling, every Ap intersects 

K. Consequently, every fi, p either lies in K or lies in some (AiA~-l)-boundary 

of K. That is, .~ C K O BDRY(K). Since A1,.. . ,-4m are pairwise disjoint, 

and since .'~ C .4 C_ g U BDRY(K), we have ~ 1.4pl = 1.41 <_ Igl + IBDRY(K)I. 
p=l  

Then, by (A), 

(I) ~ I~ipl _< (1 + 6)lg I. 
p=l  

For p = 1 , . . . , m ,  I i p l -  IApl = I i , \ i , I  <_ 61ipl, so ( 1 -  6)l~,l _< I i ,  I. 

Summing this over p, we obtain (1 - 6)(SUMA) < ~ l i ,  I. So, by (I), 
p=l 

1 + 6  . , 

(J) SUMA <_ yL--/_ ~l~l . 
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Proo[ o[ (C): By (G), by the inequality [.4[ _< SUMA and by (J), 

1 + ~ .  
(1 - 6)IKI _< SUMA < 1 _--:--gl/~'l. 

Subtracting IKI from this inequality, 

(1 + 6) - (1 - 6) ~g~ < SUMA IKf < 
( 1 - 6 )  [ g [ =  _ _ -  [g[ .  

By assumption, 0 < 6 < 1/2, so -46  < - 6  and 1 - 6 > 1/2, so 

26 
-46[K[ < SUMA - [K[ < 1 - (1/2)[K[ = 46[K[, 

which is equivalent to (C). 

Proof of(D): If an element of A lies in two of the .4vs, then it must lie in some A~, 

for otherwise it would lie in two Aps, which is impossible by pairwise-disjointness. 

So any element of .4\A* lies in exactly one .4p. Therefore, A\A* C_ r~ Ap\Bp, 
p=l  

m 

and so IA\A*I _< ~~[IApl - I/}pl] = SUMA - SUMS. Then, by (J) and (H), 
p=l  

S U M B <  SUMA - I A \ A * I  < I K 1 1 1  - 6 - - - " 

Since 0 < 6 < 1/2, we then have SUMS _< 21K](56 - 362) < 2[K[(56) = 106[K[, 

which is (D). 

Proofo[ (E): Notice that, with J defined as in the statement of Lemma 1.1, 

pEJ pEJ pEJ 

So, if (E) were to fail, then SUMS _> 10~[K[, which would contradict (D). I 

LEMMA 1.2: For every ( > 0 and every positive integer k, there exists 7" > 0 

such that, t'or ali N = 1 ,2 , . . . ,  

( N )  km <2(:N. 
l<ra<rN 

Proof: This is an easy consequence of Stirling's formula, as both Russell Lyons 

and Doug Jungreis have pointed out to me. There is also an interesting proba- 

bilistic proof of this result which we omit. | 

We will need a way of coding up quasi-tilings. 
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Detinition 1.3: If A1 , . . . ,Ak  is a finite collection of subsets of G, and if a E 

{0 , . . . , k}  G then the set  of  r ight  t r ans l a t e s  def ined by a via  A1, . . . ,Ak  

is, by definition, {Aig [g E G, i = a(g) > 0}. We denote by QT6(K) the set 

of elements a E {0 , . . . , k}  a such that a(g) = 0 for g ~ K and such that c~ 

corresponds to a g-quasi-tiling of K.  

If no Ai is a right translate of any other, then we say that A1, . . . ,Ak  is 

r educed ,  in which case there is a one-to-one correspondence between such Cr and 

such collections of right translates. If a E {0 , . . . ,  k} C and g E G, then we define 

.7g E {0 , . . . , k}  a by ag(g') = a(g'g-1). I f a  E {0 , . . . , k}  G and F C__ G, then we 

define c~F E {0 , . . . ,  k} G by 

a(g), i f g E F  
aF(g) = O, if g ¢ F. 

As in [A, §1], the notation C(Z) means the set of those configurations of the 

process Z which occur with positive probability. 

THEOREM 1.4: Let 0 < 5 < 1/2 and let A1, . . .  ,Ak be a reduced (62/9)-quasi - 

tiling system for G. For F C_ G finite, let BDRY(F) denote the union over 

i = 1 , . . . , k  of the (AiA~'l)-boundaries o f F .  Let F C_ G be a t~nite subset 

satisfying e E F = F -1 and 

(A) [BDRY(F)t < 5IFI/3. 

Let K C_ G be suttlciently invaffant that 

(B) the F-boundary of h" has fewer than 5521KI/9 elements. 

Let/¢ be a random variable taking values in K, with each value having proba- 

bility 1/[K I. Let a E QT~2/9(K). Then 

(C) P r [ ( a t : - ' ) f  E QT6(F)] > 1 - 6; and 

(D) i f M  <-min{lAll , . . . , lAkl} , thenlC((ak-~)F)l  < ~ (IFl)km" 
I<m<2IFI/M 

The point of conclusion (C) is that if we take a very good quasi-tiling of the 

very large set K,  translate it by the inverse of a random element of K and 

intersect with the fairly large set F,  then, with high probability, we will end up 

with a fairly good quasi-tiling of F. This produces a "random quasi-tiling" of F.  

PROOF OF THEOREM 1.4: Proof of (C). Let L := {9 E G IFg c_ K} denote 

the F-interior of K. Let A1, . . . ,  A,,, correspond to a. Let .4 := ~ Ap. Let 
p=l  

T : =  {kl E K I(~k~-l)F E Q T 6 ( F ) } .  



Vol. 78, 1992 AMENABLE GROUPS 151 

We must show that 

(E) IK\TI < ,~IKI. 
Let 

S : =  {(k,,g) ~ K x a19 ~ A n Fk,}. 

Fork1 E K ,  g E G ,  let 

S k' := {g ~_ G l (k l ,g )  E S) ,  Sg := {kl c= K I(k, ,g)  • S}. 

Note that, 

(E') for all kl E K,  S k~ = fi~ f3 Fkl .  

By definition of F-interior, for all g f: L, Fg C_ K.  Recall that F = F -1; thus, 

for all g E f i . nL ,  

Sg = {kl ~_ K I g  E Fk~} = F - ~ g A K  = F g f I K  = Fg, 

so IS~l = I F I .  Summing this over g E f I  r3 L, 

(F) ISl __ I~i n LIIFI. 
Now K \ L  is contained in the F-boundary of K,  so, by (B), 

II<\LI < (5n~-/9)lKI • 

Also, by definition of a (~2/9)-quasi-tiling, IK\~il < (g2/9)lKh so 

II¢1 - IA n LI = IK\(A n L)I = I(K\A) u (K\L)I < + IKI -- T I K I .  

So I fi, M L I > [1 - (252/3)]]K1. We therefore conclude from (F) that 

(G) ISl > [1 - (2,~2/3)]IFIIKI. 
By (E'), for all kl E K,  S k' = A M F k l  C_ Fk l ,  so IFkl \Sk l  I = IFkll- ISk'l = 

I F I -  IS k' I. Summing this over k, E K and using (G), we have 

IFk~NSk'l = IFIIKI-  ISt < -~IFIIKI.  
k t E K  

Therefore, if 

R:= {k, E K l IFk,\Sk'l>>_ ~lFI }, 
then IRI < ~lKI. To prove (E), we will show that K \ T  C_ R, i.e., that K C_ TUR, 
i.e., that K \ R  C_ T. 
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Sofix kl E K\R.  To show that kl E T, i.e., that (ak11)F E QTs(F), it suffices, 

by right translation, to show aFk~ E QT6(Fkl). Reorder A1, . . . ,  A,, so that the 

collection -41,..., -4t corresponds to aFk~, while -4t+1,..., -4,n corresponds to 

O ' G \ F k  I . Since the larger collection -41,..., A,,~ is 6-disjoint, it is immediate that 

the smaller one -41,...,-4t is as well. Thus, it remains to show that the sets 

~,l , . . . ,-4t cover all but a 6-fraction of Fkl, i.e., that 

(H) IFk~\(~.l U. . .  U A-t)[ < 6IFk~l. 

Now S k, = A A Fk~, so FkI\A = Fk~\(A N F k l )  = FkI\S k~. Since k~ ~ R, 

this implies that 

(I) IFkl\A[ < 26[FI/3. 

Fix any integer p in the range t + l  _< p <_ m. Since -4t+l, . . . ,  A,m corresponds to 

o'a\Fk~, we find that 2,p N (G\Fk~) ~ 0. So, by definition of BDRY(Fk~), either 

.Ap n Fk~ = 0 or Ap C_ BDRY(Fk~). In either case, .4p n Fk~ C_ BDRY(Fk~). 

This holds for p = t + 1,. . .  ,m, so Fk~ n (-4t+~ u . . .  tA .4m) c_ BDRY(Fkl). 

Now let Q := Fk1\(A.1 U... t9 A,). Then 

Q = [Q\(2,+~ u . . .  u ~ ) ]  u [~ n (2~+~ u . . .  u ~ ) ]  

c [F~\(2~ u . . .  u 2m)] u [F~l n (~,+~ u . . .  u 2m)] 

c (rk~\fi) U [BDRY(Fk~)]. 

By translation invariance [BDRY(Fk~) I = [BDRY(F)], so, by (I) and (A), 

2~IFI ~IFI = ~IFI- 
IQI <- IFk~\A[ + [BDRY(F)I < T + T 

By definition of the set Q, this gives (H), finishing the proof of (C). 

Proof of(D): Fix k~ ~ g .  Let SUPP := {g ~ F la(gk,) > 0} denote the support 

of (ak~ ~)F. The sets corresponding to (ak~ ~)f form a (~/9)-disjoint collection 

of subsets; further, they are all contained in U := F U BDRY(F) and they all 

have cardinality _> min{[A~[,..., [A~[} > M. By definition of (6~/9)-disjointness, 

there is then a disjoint collection of subsets of U, indexed by SUPP, each of size 

_> M[1 - (6~/9)]. Thus ISUPP[M[1 - (6~/9)] _< [U[. By (A), [U[ < [El(1 + 6), so 

IFI 1 + 
ISUPP[ < 

M 1 - (6~/9)" 

Since ~ < 1/2, we conclude that [SUPP[ < ([F[/M)(3/2)(35/36) -~ < 2[FI/M. 



Vol. 78, I992 AMENABLE GROUPS 153 

Thus each configuration of (ak-1)F has fewer than 21FI/M non-zero values. 

These values can range through the set {1, . . . ,  k}, so 

' 

I <ra<21FI/M 

2. Fini te ly  Determined  and finite processes  

Again, G denotes a discrete, countable, amenable group with identity element e. 

As in [A, Definition 3.6], two stationary G-spin systems X and X' are (`5, F)- 
close in entropy and finite distr ibution if 

IH(X) - H(X')I < ,5 and d(XF,X~F) < 6. 

As in [A, Definition 3.7], a stationary G-spin system X is Finite ly  Determined  

if, for all e, there exists (6, F)  such that: any stationary G-spin system X' which 

is (6, F)-close to X in entropy and finite distribution satisfies d(XK, X~.) < e, 

for all sufficiently invariant finite subsets K _C G. 

In this section, we describe a way of comparing two finite processes in entropy 

and distribution. We use this to give a criterion for a G-process to be Finitely De- 

termined in terms of the finite subprocesses of the process obtained by restricting 

to F01ner sets (see Theorem 2.8). 

We define a right action of G on {+1, -1}  a by (ag)(g') = a(g'g-1). In the 

following definition, if F, K _C G are finite and if a E {+1, -1}  I¢, then we define 

aF + e { + 1 , - 1 }  F by 

aS(g ) = { a(g), if g E g n F 
+1, if g E F\K .  

Note that if g E G, if F,K C G are finite and if a E {+1 , -1}  K, then ag E 
{+1, -1}  gg, so (ag) + E {+1, -1}  F is defined by 

(ag)+(g,) = {a(g 'g-1) ,  ifg' e (Kg) OF 
+!,  if g' e F\ (gg) .  

Det~nition 2.1: Let F,K C_ G be finite. Let Y := {Yk}keg be a K-spin system. 

Let k be a K-valued random variable taking each value of K with probability 

1/Ig]. Couple Y and k independently. Then we define Avg(Y):= (y~- l )+ .  
f 

Recall from [A, end of §1 and Definition 2.4] the definitions of the entropy 

H(X) of a finite process X and of the d metric for finite processes. 
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Det~nition 2.2: Let F, K C G be finite. Let X and Y be K-spin systems. We 

say that X and Y are (6, F)-close in e n t r o p y  a n d  f ini te  d i s t r i b u t i o n  if 

(1) IH(X) - H(Y)[  < 6[g[; and 

There is the possibility of confusion here in case G is a finite group and K = G, 

since H ( X )  then has two possible interpretations, one as the entropy of a group- 

process (see [A, Lemma 3.5]), the other as the entropy of a set-process (see 

[A, §1]). In (1), above, H ( X )  and H ( Y )  are to be interpreted as entropies of 

set-processes. By constrast, in (1) of [A, Definition 3.6], H ( X )  and H ( X ' )  are 

to be interpreted as entropies of group-processes. Furthermore, if G is finite and 

K = G, then, for any F C G, we have Avg(X) = XF.  So there is no inconsistency 
F 

between [A, Definition 3.6] and Definition 2.2 above. 

Recall that if Z is any process, then C(Z) denotes the set of configurations of 

Z which occur with positive probability. 

LEMMA 2.3: I l K  is any set, i f Z  a K-process and if  C(Z) is a t~nite set, then 

H ( Z )  < log= IC(Z)I. 

Proof: This is a basic property of entropy. I 

Recall the d and d metrics of [A, Definition 2.4]. 

LEMMA 2.4: Let I be any set. Let X be an I-process and let r > O. Let 

C g C(X) satisfy Pr[X ~ C] < r. Let Y := X I ( X  E C) denote the conditioned 

process of X conditioned on X E C. Then d(X,  Y )  < r. 

Proof: For every a E C, we have Pr[X = a] = (1 - r)Pr[V = a I _< Pr[Y = a]. 

Therefore there exists a coupling m of X and Y under which: for every a E C, 

X = a  ~ Y = a .  Under this coupling, X C Y  ~ X ¢ C ,  s o P r  m [ X c Y ] < r ,  

as desired. | 

LEMMA 2.5: Let 6 > O, let K be a/inite set and let X ,  Y and Z be K-processes. 

Let c be a coupling of X and Y.  For a11 a E C(Y), let X~ denote the conditioned 

process XI(Y = a) with respect to c. If, for all a E C(Y), d(X, ,  Z) < 6, then 

d(x, z)  < 6. 

Proof: Any family {m~,}~ec(y) of couplings of X~, with Z induces a coupling m 

of X with Z. Let P ,  := Pr[Y = a], for all a E C(Y). Then 

d (x , z )  <_ dm(x , z )  = 7 ' .am°(x. ,z) .  
¢~c(Y) 
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The result now follows by taking the infimum over families {m~}. | 

Deflnition 2.6: If K is a finite set and X is a K-process, then we say that X 

is (e, 6 ) -ex t remal  if: for all K-processes Z satisfying log 2 IC(Z)I < 61K h for all 

couplings of X with Z, we have 

E P r [ Z = a ] d ( X l Z = a , X ) < e .  
~,Ec(z) 

The inequality in Definition 2.6 is meant to indicate that X and Z are almost 

independent in the process sense. In fact, if X and Z were distinct, then this 

inequality would be equivalent to saying that X and Z were e-process independent 

(see [A, Definition 2.8] and [A, Lemma 2.6]). 

THEOREM 2.7: I f  X is a Finitely Determined stationary G-spin system, then, 

for ali e > O, there exists $ > 0 such that: for any sumciently invariant K C_ G, 

the process X K  is (e, 6)-extremal. 

Proo£" This is a rephrasing of [O-W, Proposition 8, p. 117]. | 

The following is the main result of this section. 

THEOREM 2.8: Let X be a Finitely Determined stationary G-spin system. For 

every e > O, there exists a 6 > 0 and a ~nite subset Fo C_ G such that: if  K 

is su~eiently invariant and i f  Y is a K-process which is (8, Fo)-close to X K  in 

entropy and finite distribution (Det]nition 2.2), then d( XK,  Y )  < e. 

Proo~ The proof of this theorem occupies the remainder of this section. We 

divide it into five s~eps. 

STEP 1: The construction of Y .  We may assume e < 1/2. Then 

( 1 A )  e 8 + e 4 < e < 1. 

As X is Finitely Determined ([A, Definition 3.7]),  we  may choose r/ > 0 and 

F0 _C G finite such that: 

(1B) if Z is a G-process which is (7/, F0)-close to X in entropy and finite distri- 

bution (see [A, Definition 3.61), then d(Xt~-, Zt~) < e 8, for all sufficiently 

invariant K C G. 

Replacing F0 by F0 O {e} U F0 -1, we may assume that e E F0 = F o  I • Using 

(1A), we may choose 5 satisfying: 

( 1 c 1 )  0 < < 1 / loo ;  

( lC2)  + x/ (a  + + _ < 1; 
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(lC3) 6 + 4(6 + +  8)i(1 _ 6)2 < 

(1C4) 5611(X) -}- 195 < ~/; and 

(1C5) 135 + 20v~ + 2v/-~(1 + [FoF~" D < 7/. 

It follows from (1C2) that 

(1C6) 6 + e  4 + e  s < l .  

By Theorem 2.7, we may choose 6 so small that 

(1C7) for all sufficiently invariant K C_ G, XK is (e 1~, 6)-extremal. 

Let ~" denote the collection of all subsets A C G such that: 

(1D1) there exists an A-process yA such that XA and yA arc (6, F0)-close in 

entropy and finite distribution (Definition 2.2); and 

(ID2) d(XA,yA) >_ e. 

To prove Theorem 2.8, we need to show that ~r is not a F¢Iner family (defined 

at the beginning of [A, §3]). We assume for a contradic t ion that jr  is a F¢lner 

family. 

A F¢lner family ~ will be said to be t ranslat ion-invariant  if, for all A E ~, 

g E G, we have Ag E ~. By the proof of [O-W, Theorem 6, p. 24], we may choose 

a positive integer k such that: 

(1E) any translation-invariant FOlner family contains a (62/9)-quasi-tiling sys- 

tem with k sets. 

By Lemma 1.2, choose M > 0 such that: 

(1F) ~ (N)km<2'N, forallN=l,2,. . . .  
I <~m<~2N/M 

Let ~ denote the set of A E ~ such that 

(1G1) (1 - 6)IA 1 > M; 

(1G2) the (FoF0-1)-boundary of A has cardinality < v~]A]; and 

(1G3) H(XA)- ]A[H(X) < 6[A[. 
Since jr  is a F¢Iner family, ~ is again a F¢Iner family. All of the conditions 

(1D1), (1D2), (1G1), (1G2), (1G3) are translation-invariant, so, by (1E), we may 

choose a finite subsets A1,. . . ,  Ak C_ G such that: 

(1H1) for i E {1,. . . ,k},  the set A : Ai satisfies (1D1), (1D2), (1G1), (1G2) 

and (1G3); and 

(1H2) A1,..., Ak is a ($2/9)-quasi-tiling system for G. 

By translation-invariance, we conclude from (1H1) that 

(1H3) if A is a right translate of some Ai, then A satisfies (1D1), (1D2), (1G1), 

(1G2) and (1G3). 
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By definition of a quasi-tiling system, e E A1 C A2 E Ak, so 
(1H4) e E A1 n -. . n Ak. 

Since A1 C . - E At the system A], . . . , Ak is reduced. Hence the (A1,. . . ,Ak)- 

correspondence is well-defined. (See the text following Definition 1.3.) 

Fori = 1 ,..., k,let A = Ai E C3,chooseYA asin(1Dl)andset Yi :=yA. 
Then, for all i = 1,. . . , k, we have: 

(11) XAi and yi are (6, Fo)-close in entropy and distribution. 

Let Kl, K2,. . . be any F~lner  sequence in G, i.e., a sequence such that 

(1J) if ~1 > 0, and Fl E G is finite, then & is (ql, Fl)-invaxiant, for all but a 

finite number of s. 

(It follows immediately from the definition of amenability that Fdner sequences 

exist.) For s = 1,2,. . ., let k, be a random variable taking values in K,, with 

each element of h', having probability 111 K, 1. Choose a (62/9)-quasi-tiling of 

K, by right translates of A1,. . . , Ak and let this quasi-tiling be represented by 

a, E (0,. . . , kIG in the (A1,. . . ,Ak)-correspondence. 

Fix a positive integer s. Let A1,. . . , A, correspond to a,. Let KO be the set 

of k E K such that k lies in a unique Ap. If rp E {+I, - 1 I A p ,  for p = 1,. . . , m  

then define ( p ~ l T p )  E {+1,-1)~ by: 

Now recall that G acts on {+l, -1IG via (ag)(gl) = u ( ~ ' ~ - ' ) .  For each p = 

1,. . . ,m ,  choose an integer i, 1 < i 5 k, and a g E G such that Ap = Aig; then 

define := Y ig. Let Y, denote the G-process ( p ~ l ~ p ) .  

- 
For each s = 1,2,. . . , we couple Y, and k, independently. Recall from [A] 

the notation: if F F' C_ G and if Z = {Zs)gEFl is any F'-process, then 

ZF := {Zf)fEF denotes the restriction of Z to F. For each finite F G, we 

obtain a sequence of F-processes (Y,L;~)~. Each of these processes is coupled 

with ( a , ~ , ' ) ~  in an obvious way; call this coupling m,. Using a Cantor diag- 

onalization argument, we may pass to a subsequence of Kt ,  K2, .  . . and assume 

that: for each finite F C G, as s + co, the processes ((T,~,')F and (Y,&,')F 

both converge. Call the limits of these two sequences Q~ and yF, respectively. 

The couplings m, (after passing to another subsequence) tend toward a coupling 

mF of QF and YF. It is routine to check the consistency conditions of the Kol- 

mogorov existence theorem, which shows that there exist G-processes Q and Y 
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such that OF = QF and YF = yF, for all finite F C G. This existence theorem 

also gives a coupling m of Q with Y. It is straightforward to check that Q and 

Y are stationary (under right translation by elements of G). 

Intuitively, Q is a random quasi-tiling and Y is a process which is obtained 

by running Q and then independently running the translated Y/-processes cor- 

responding to each tile of the output of Q. Since we have a quasi-tiling and not 

a perfect tiling, there may be some elements of G covered by no tiles or covered 

by more than one of the tiles. We assign the output of the Y-process to be +1 

at such ambiguous points. 

Steps 3, 4 and 5 verify the following three statements: 

(1M1) if g is sufficiently invariant and e E g = g -1 , then IH(YK) - H(XK)I < 

 lgl; 
(1M2) d(Xfo,Yfo) < 71; and 

(1M3) the finite sets K C_ G for which e E K = K -1 and d(Xg, YK) > e s form 

a F¢lner family. 

These together will c o n t r a d i c t  (1B), and will prove the theorem. 

STEP 2: Preliminaries. As in Theorem 1.4, for any finite subset F C G, let 

BDRY(F) denote the union of the (AiAi-~)-boundaries of F,  over i = 1 , . . . ,  k 

and let QT6(F) denote the set of elements of {0 , . . . ,  k} G which correspond to 

5-quasi-tilings of F under the (A1, . . . ,  Ak)-correspondence (Definition 1.3). 

By conclusion (C) of Theorem 1.4: for all sufficiently invariant F C G, if 

c E F = F -1, then 

Pr[(as/cj-1)F E QT"KF)] > 1 - 5, 

for all sufficiently large integers s. Consequently, this is true in the limit QF = 

QF, so we conclude: 

(2K1) if e e F = F -~ and F C G is sufficiently invariant, then Pr[QF E 

QT~(F)] > 1 - 5 .  

Further, a,  Its IF ahnost surely corresponds to a collection of sets which are 5- 

d is jo in t  (i.e., such that each set can be shrunk by a 5-fraction with the resulting 

sets pairwise-disjoint, see the start of §1). Further, if a right translate of an Ai 

meets F, then, using (1H4), we see that it is contained in F U BDRY(F).  So: 

(2K2) for all finite F C_ G, QF defines a 5-disjoint collection of subsets of F U 

BDRY(F),  almost surely. 

XVe c la im that 
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(2L) if K C G is sufficiently invariant, then log 2 JC(QK)I < (ilKI. 

In fact, by [A, Lemma 3.2], choose g sufficiently invariant that [BDRY(K)[ < 

[K I. If A~,...,.4,,~ is a &disjoint collection of right translates of A1 , . . . ,  Ak and if 

ApNK ~ 0, for p = 1 , . . . ,  m, then each fi.p may be shrunk by a (f-fraction with the 

resulting sets forming a disjoint collection, each one a subset of K U BDRY(K). 

Using (1G1) and the fact that ~ < 1/100 (see (1C1)), we then have 

mM _< IA, l 0  - (i) + ' "  + IA.~l(1 - (i) < IK u BDRY(K)I  < IKI + IKI = 21Zl. 

Then, by (2K2), each configuration of QK has fewer than 21KI/M non-zero 

values. These values can range through the set {1 , . . . ,  k}, so 

l<m<21gllV \ m / 

By (1F), log a le(Qg)l < (ilKI, proving the claim. 

STEP 3: The entropy calculation. In this step, we verify (1M1). 

It is easily seen that the collection of finite subsets K _C G satisfying e E K = 

K -1 is a Fc~lner collection. So, by (2K1), choose e E K = K -1 sufficiently 

invariant that 

(3A1) Pr[QK E QT"~(K)I > 1 -  a. 

Recall that BDRY(K) denotes the union of the (A~A.71)-boundaries of K,  over 

i = 1 , . . . ,  k. By [A, Lemma 3.2], choose K C_ G sufficiently invariant that 

(3A2) IBDRY(K)[ < (iIKI. 

By conclusion (D) of Lemma 1.1, 

(3A3) in any (i-quasi-tiling of K,  the cardinality of the collection of points lying 

in two or more tiles is < 10(i[K[. 

Recall that the number M was chosen so that (1F) holds. We now assume 

that K is sufficiently invariant that 

(3A5) M[BDRY(K)I < IKt. 

By (2L) and Lemma 2.3, we may choose K sufficiently invariant that 

(3A6) H(QK) <(ilK[. 

Finally, by the defnition of entropy ([A, Lemma 3.5]), assume K is sufficiently 
invariant that 

(3Ar) H(Xh.)- [K[H(X) < ~1~1. 

Let L := I(',BDRY(I~'). Since K\L C BDRY(K), it follows from (3A2) tha~ 
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(3A8) 0 < IK\LI < ~lgl. 

To finish Step 3, we must now show that 

(3B) I H ( Y K )  - H(XK)I < r / I g l .  

Fix a E C(QK). Let Yk be the conditional process YKI(QK = a) and let Y~ 

be the conditional process YL ](QK = a). Then 

HCY~) - ttCY~) = H(Y~.\LIY~, ) < H(Y~i\L ) ~_ IK\LI.  

For a E C(QK), let He := H(YK[QK = a). Thus, by (3A8), for all a E C(QK), 
I I 

(3c )  i ~ ,  - ~ (Y , : IQ ,~  = " ) I  < ~l~:l. 
Now fix any a E QT6(K). Let .4],. . . , .4m be the sets corresponding to a. 

! I 

Recall that G acts on {+1,-1} a via (ag)(g ~) = a(g'g-1). For p = 1 , . . . ,m ,  

write "4v = Aig and define YP := Y~g. Let H v := H(~'p). The conditional 

process YL I(Q/~ = a) is a factor of the joint process obtained by independently 

coupling 171,..., ~m: one runs ~-1,..., ~-m independently, then sets to +1 the 

values at elements of G which lie in more than one of the tiles .41,... ,-4m, and 

then ignores the values in BDRY(K). Thus, by (3A2) and (3A3), 
I 

I H, +. . .  + H,,, - H(YLIQK = a) I < 106IKI + 61KI + ~IKI. 
$ 

(3D) 

Let H := H( X ) .  For p = 1 , . . . ,m ,  by (1H3), (1D1) and (1G3), IH(~ "p) - 
! ! 

H(X.,i,)l < ,~1-~,1 and H(XA, ) -I.Z.,IH < 61,4,1, so 

(3E) Hp - I i p l H  < 2~1i, I. 
Let SUMA := IA11+"" + lira I- Since 6 < 1/100 (see (1C1)), conclusion (C) of 

Lemma 1.1 implies that SUMA < IKI + 461K I < 21K h so adding the inequalities 

of (3E) for p = 1,.. .  ,m gives 

<3F) IH, + . . .  + H . -  ~[SUMAII < 
I I 

451KI. 

Finally, by conclusion (C) of Lemma 1.1, SUMA - Igl < 4~iIgl, so 
I I 

(3G) H[SUMA]- H I K  I < 4$IKIH. 

Combining (3C), (3D), (3F) and (3G) we see that if a 6 QT6(K), then 

(3H) Ha - H I K  I < 16~lgl + 5~IKIH. 

Let QT := QT6(K). For each a 6 C(QK), let 7~ := Pr[QK = a]. By (3A1), 

a~QT 
By [A, Lemma 2.22], H~ _< IK], so (3I) implies 

(3J) 0 _< ~ ~,,. He < ~IKI. 
a~QT 
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By (3H) and the fact that 0 _< E "p~, -< 1, we get 
oEQT 

(3K) E p°" I H~ -[K]H[ < 166[K[ + 46[K]H. 
a6.QT 

The basic properties of entropy imply that H(YK[QK) = E P ¢ .  Ha. 
ff 

using (3I), (3J) and (3K), we conclude 

Thus, 

<-- aE~QTTDa • H,, - IKIH + ~ P .  IKIH + 6[K[ 

< (16~IK] ÷ 46]K]H) + ,~]KIH ÷ 6]KI. 

Thus 

(3L) ]H(YKIQK) - [KIH]  < 17~[g[ + 5~[KIH. 
I 1 

The basic properties of conditional entropy imply that H(YK) = H(QK) ÷ 

H(YKIQN). By (3A6), (3L), (3A7) and (1C4), we conclude 

[H(YK) -- H(XK)[ = [H(QK) ÷ [H(YK[QK) -- H(XK)][ 

< H(QK) + [H(YK[QK)-  [K[H[ + [K[H - H(XK)  

< ~IKI + (17~lKI + 5~IKIH) + 6lKI 

= (SgH + 196)lgl < ~[gl, 

establishing (3B), as desired. | 

STEP 4: The distribution calculation. In this step, we will verify (1M2). 
By (2K1), choose K satisfying e E K = K -1 sufficiently invariant that 

(4A1) Pr[Qr • Q~'6(/~)] > 1 -  6. 
Recall that if K _C G is finite, then BDRY(K) denotes the union over = 

1,... ,k of the (AiA~-l)-boundaries of K. By [A, Lemma 3.2], choose K suffi- 
ciently invariant that 

(4A2) [BDRY(K)[ < ~[K[. 
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Let k be a K-valued random variable, with each value of K having probability 

1/]K I. Couple k independently with the joint process (Q,Y). (Note that there 

is, by construction in Step 1, a coupling m of Q and Y.) 

As before, G acts on the right of {+1,-1} e via (ag)(g ' )  = a(g 'g-1) .  Recall 

that if Z = (Zg}gcv is a G-process and if S C_ G, then Z s  denotes the restriction 

( Z s ) s e s  of Z to S. Since Y is stationary, we conclude that Y is isomorphic to 

y ~ - i ,  so YFo is isomorphic to ( Y k - 1 ) F  o. Thus, to conclude this step, it suffices 

to show that 

d(XFo,(Yfc-1)Fo)  < ~?. 

Let (kl, ]"1, Q1 ) be the conditional joint process (I¢, II, Q) conditioned on 

(dB) QK E QT6(K). 

By (4A1), the event of (dB) fails with probability </f,  so, by Lemma 2.4, it 

suffices to show 

d ( X F o , ( Y l k l l ) F o )  < r] - ~. 

Fix any ao E Q T ~ ( K ) .  Let fiq,.. . ,A,~ denote the sets in this 6-quasi-tiling. 

By (1H3), for p = 1 , . . . ,m ,  

(4C) the set A = Av satisfies (1D1), (1D2), (1G1), (1G2) and (1G3). 

Let (1¢2, ]I2, Q2) denote (~:1, ]I1, Q1) conditioned on 

(4D) ( Q , ) K  = do. 

By Lemma 2.5, it suffices to show that 

d(XFo, (Y2k~l )Fo)  < • -- ~. 

Then f¢, fq and k2 are all isomorphic, so k2 takes each value of K with prob- 

ability 1 / I K  ]. Further Y2 is isomorphic to the conditional process Y I ( Q K  = a). 

Finally, ~'i and }~ are independent, for i = 1,2. 

Let K0 denote the set of elements of K which are contained in exactly one alp. 

Let (~:a, Ya, Qa) denote (k2, Y2, Q~) conditioned on 

(dE) f¢2 E K0. 

Note that k'a takes each value of K0 with probability 1/IK0 I. The inequality 

in conjunction with conclusion (D) of Lemma 1.1 allows us to conclude that 

IK\K01 < 10 IKI +  IKt, so 



Vol. 78, 1992 AMENABLE GROUPS 163 

(4E') I/C\K01 < l lSIK 1. 

Thus (4E) fails with probability < 11(5. Thus, by Lemma 2.4, it suffices to 

show that 

d(XF,,(Ya[cal)Fo) < r/-- (5 -- 11(5 = r / -  12(5. 

Let J denote the set of p, 1 < p < m such that 

Let/5 be the {1, . . . ,  m}-valued random variable defined by ~:3 E A~. Note that, 

for a l l p =  1 , . . . , m ,  
pr[i5] = [K0 Cl A,] 

IK01 

Next, let (k4, Y4, Q4) denote (k3, Y3, Qa) conditioned on 

(4F) /5 e J. 
Note that/~4 takes each value of K0 Cl (pUjAp) with equal probability. By (4E'), 

we have [K](1 - 11(5) < [K0[. So, by conclusion (E) of Lemma 1.1, we conclude 

that (4F) fails with probability 

< (10vqlK{)/IKol <_ 10vq/(1  - 11(5) < 20vq,  

as (5 < 1/100 (see ( lCl)) .  Thus, by Lemma 2.4, it suffices to show that 

d(X~o,(Y~,g')~o) < ,  - 1 2 a -  20vq. 

Fix some number P0 E J. Let (/~5, II5, Qs) denote (~:4, Y4, Qt) conditioned on 

(4G) p = p0- 

Note that k5 takes each value of Ko A -4po with equal probability. By Lemma 

2.5, it suffices to show that 

d(X.o,(Y~';')Fo) < ,  - 1 2 e -  2 0 ~ .  

L e t / )  := -4p0 N (p,eU,o-~,,) . Since p0 e . l ,  

(4H) IBI-< v~lA,ol. 
By definition of/t'0, K0 Cl .2Ip0 = fi-po \/).  Then k5 is a random variable taking 

values in -~po \ / )  (and taking each value with probability equal to all the others). 
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Let C' denote the (FoF o' )-interior of .4p0\B. Let (/ce, Ye, Q6) denote (ks, Ys, Qs) 

conditioned on 

(4I) k5 E C'. 
Note that k6 takes each value of C with probability 1/IC I. By (1H3) and 

(1G2), the FoF0-Lboundary Ofof;-~ (/ip0) of-4p0 satisfies 

Now 

Thus, by (4H), 

IOFo~C'(Apo)I < ~IA~ol. 

~i,0\c' c oroF_,(¢i,o) u C~FoFo'b). 

~o 
(4J) ICI > 101 

I~i,°\B-----~ - ~ >- 1 - 4g(1 + Ir0r0-'l). 

So the event (41) fails with probability < v~(1 + IFoF0-11). Thus, by Lemma 
2.4, it suffices to show that 

d(XFo,(Yfk6l)Fo) < }7 - 12~ - 2 0 V ~ -  V/~(I + [ F o F o l  I). 

Write .4po = Aiogo, for some 1 < io < k and some go E G. Let As := Aio. 
Let y0 := yAo. We know from (4C) and (1D1), by Definition 2.2, since X is 

stationary, that 

Let 5o be a random variable taking each value of A0 with probability 1/[Aol. 
Couple y0 and n0 independently. Then, by Definition 2.1, we know that 

~(x~0,  (Y°ao')+~0) < ,. 

Thus it suffices to show that 

d((Y~k;')Fo, (Y°5o')+o) < T/- 136-  2 0 v ~ -  x/~(1 + IFoF0-' I). 

Let (y1, al) denote (y0, ao) conditioned on 

(4K) ao E Cgo' .  
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By (4J), the probability that (4K) fails is < v/~(1 + ]FoF0-1 [). Thus, by Lemma 

2.4, it suffices to show that 

d((Yj:[l)fo, (Y°a'[1)Fo) < T} -- l a b -  20v/~ - 2vf~(1 + ]foFoll). 

(We have used that ( Y 0 a ~ - ' ) +  ° = (y0a~- ' )~ .0 ,  which follows from the fact that 

F05, C Ao, almost surely.) 

Now Y2, Ya, Y4, Y5 and Y6 are all isomorphic to the conditional process 

Y](QK = ao). Further, ki and Yi are independent, for i = 1 , . . .  ,6. 

Similarly, yo  and y l  are isomorphic. Similarly, ~j and y J  are independent, 

f o r j  = 0,1. 

Finally, al is isomorphic to ~:6go 1, since the former is equidistributed over 

Cgo 1 and the latter is equidistributed over C. 

It follows from the definitions of Y, Q and C' that (Y6)r0f/,  c is isomorphic to 

(Y°go)Fol:[lc, for all c E G'. Since e E F0 and since y0 and y l  axe isomorphic, it 

follows that (Y6)foc is isomorplfic to (Ylgo)Foc , for all c E C. Right translating by 

c - ' ,  we conclude that (Ysc-l)Fo is isomorphic to (yl(cgol)-l)Fo, for all c • C'. 

Averaging these isomorphisms over c • G', we find that (Y~k~-I)F ° is isomorphic 

to (Yla l l )F0 .  

That  is, we know: 

d((Y6k61)F0, ( y l a l l ) F 0 )  ~- 0. 

Therefore, it suffices to show 

0 < ~/ -  13b - 20v~ - 2v/-~(1 -{- [FOR;' ]). 

This is true, by (1C5). 

STEP 5: The d calculatlon. In this step, we verify (1M3). In fact, we will show 

that d(Xg, YK) _> e 8, for all sufficiently invariant K C G satisfying c • K = K - ' .  

Since the collection of finite K C G satisfying e • K = K -1 is a F01ner family, 

(1M3) will then follow. 

By (1C7), we may choose c • K = K - '  sufficiently invariant that 

(5A1) X #  is (ele,~)-extremal. 

By (2L), we may choose K sufficiently invariant that 

(5A2) log 2 ]C(Q~,.)] < 6 [g  I. 

Recall the definition of QT~(K) given following Definition 1.3. Using (2K1), 

we also require that K be sufficiently invariant that 
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(5A3) Pr[QK 6. QT6(K)] > 1 - / f .  

Recall that, if K C G is finite, then BDRY(K) denotes the union over i = 

1 , . . . , k  of the (AiA~-l)-boundaries of K. By [A, Lemma 3.2], choose K so 

invariant that 

(5A4) [BDRY(K)I < 6[g]. 
It now suffices to show that d(XK, YK) _> e s. So assume for a contradiction 

that there exists a coupling m of XK and YK such that 

(5A5) d " ( X g , Y g )  < e a. 

Recall from (5A1), (5A5) and Definition 2.6 that 

Pr[Qg = a l J ( X g I Q g  = a, X g )  < e '~. 
~,~C(QK) 

Let $1 denote the set of a 6. C(QK) such that d(XK, XK[QK = a) < es. Then 

(5B1)  Pr[QK 6. $1] > 1 - es. 

Consider next the set $2 of a 6. C(QK) such that 

J " ( X K I Q K  = ,7, YKIQK = a) < ~4. 

If Pr[QK ~ $2] >_ e 4 then (5A5) would fail. Therefore 

(5B2) Pr[QK E $2] > 1 - e 4. 

Then, by (5A3), (5B1), (582) and (1C6), we may choose ao 6. C(QK) such 

that: 

(5C1) a0 6. QT+(K); and 

(5C2) a0 6. $1 N S2. 
From (5C2) and the definition of $1 and $2 we obtain 

(5C3) d(Xt,., YK[Qg = ao) < ~4 + es. 

Let .41,...,~i-,n denote the sets in the quasi-tiling corresponding to a0. By 

(5C1), we may choose pairwise-disjoint A1,...,-4m with .4p C_ Ap and with 

IAp/Ap[ < 51.4p], forp = 1 , . . . ,m.  Let .4 := ~ .4p, .4:= ~ .4p. Then . 4 \ g  C_ 
p=l  p=l  

BDRY(K), so, by (5A4), we have [.4\K[ _< 5[gl. Thus, by (5C3), 

[.4] d(X~,  YA[QK = a0) < alKI + (e 4 + eS)]K[. 

Now, by definition of a a-quasi-tiling and by summing the inequalities IAr] > 
(1 - ~)l~i,I over p = 1,...  ,m, we obtain 

IAI > (1 - a ) l A l  > (1 - a)21KI . 
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Let A := (~ + e 4 -'~ e8)/(1 -- ~)2. From the last two displayed inequalities, we 

conclude that 

(hD) d(X x , Y~IQK = ao) < A. 
Let Jl denote the set of integers I _< p _< m such that d(X~p, Y.~p]QK = ao) >_ 

V~. By (hD) above, 

(5E) ~ 1.4,l < v~lK]. 
pc J1 

Let J2 denote the set of integers 1 < p _< rn such that 

By conclusion (E) of Lemma 1.1, 

(hF) ~ I 1,1 < 10v~lKI. 
PE J2 

By (hE), (5F) and (1C2), we may fix an integer 1 _< p < m such that p 

J1 U J~. Then [A, Lemma 2.3] allows us to conclude from p ~ J1 and from 

[Apl/]Ap] > (1 - (~)[Ap[ that 

(hG) d(XA, , YA, IQK = ao) < Vf~ +& 
Write fi.p =Aic ,  for some integer 1 < i < k and some c E G. Then XA~C is 

isomorphic to X A .  Further, as p ~ J2, we see that d(Yic, Y~,]Qg = ao) < v/'~. 
Thus, by (hG), d(XA, c, Yic) < vfA +/f + v~. By (1C3), d(XA, c, Yic) < e, so, by 

translation invarianee, d(XA~, yi )  < e. But y i  = yA~, so this contradicts (1H1) 

and (1D2), concluding Step 5. 

This completes the proof of Theorem 2.8. 1 

3. Very Weak Bernoulli and Finitely Determined 

Definition 3.1: We say that a stationary G-spin system X is Very Weak  

Bernoulli if, for all e > 0, for some disjoint e-quasi-tiling system A1, . . . ,Ak,  

for every sufficiently invariant finite set K C_ G, there exists an ordered disjoint 

e-quasi-tiling A1, . . . ,  fi,,~ of K such that: 

F o r p = 2 , . . . , m ,  let /hp:=fi . lU. . .Ufi .p_l .  Then, for a l l p = 2 , . . . , m ,  

the process XA, is e-process independent of Xpp (see [A, Definition 2.81). 

An ordered disjoint e-quasi-tiling with this property will be said to be e-almost 

independent under X. 

To obtain the definition of VWB for Z-actions from Definition 3.1, we choose 

a large integer n, define k := 1, A1 := {1.. .  ,n}. Now suppose, for example, that 
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K = {1 , . . . ,  ran}. We then use the ordered tiling of K by the sets 

{1 , . . . , n} ,  {n + 1 , . . . , 2n} ,  . . .  , { ( m - 1 ) n + l , . . . , m n } .  

For a moment, say that X is strong VWB if it satisfies the above definition, 

but with "for some disjoint e-quasi-tiling system" replaced by "for any disjoint 

e-quasi-tiling system consisting of sufficiently invariant sets". In Theorem 3.7 

we will actually show that VWB implies Finitely Determined and that Finitely 

Determined implies strong VWB. Since strong VWB clearly implies VWB, we 

see that  the two are, in fact, equivalent. 

While we will not pursue this here, B. Weiss has pointed out to me that  this 

formulation of Very Weak Bernoulli can be rephrased in terms of "almost block 

independence", a concept which is fundamental to the proof of [A, Theorem 4.2]. 

Fix a finite subset A C G. Let a be an A-valued random variable which takes 

on each value of A with probability 1/]A[. Let a E {+1 , -1}  A. Define Avg(a) 
F 

to be the F-spin system (a5-1) + (see Definition 2.1). 

If K C G is finite, if X is a K-process and if P(a) is a property of configurations 

a E C(X), then we will say that P(a) holds for e-a.e, a E C(X) if 

Pr[P(X) holds] > 1 - e. 

A stationary G-process X is e rgodic  if: for any G-invariant Borel subset 

E C {+1 , -1}  a,  we have either Pr[X e E] = 0 or Pr[X e E] = 1. 

THEOREM 3.2: Suppose X is an ergodic, stationary G-spin system, e > 0 and 

F C_ G is finite. Then, for all sufficiently invariant K C_ G, for e-a.e, a E C(XK), 

d(XF,Avg(a)) < e. 
F 

Proof: This is a consequence of the Mean Ergodic Theorem for amenable groups. 

([01, yon Neumann's theorem 3.2.4, p. 43]) m 

THEOREM 3.3: Suppose X is an ergodic, stationary G-spin system and )~ > 0. 

Then, for all su~ciently invariant L C_ G, for A-a.e. a E C(XL ), 

(1 + A)-IH(X)ILI < - l o g  2 Pr[XL = a] < (1 + ~)H(X)IL I. 

Proof." This is the Shannon-McMillan Theorem for discrete amenable groups, 

cf. [01, Theorem 4.4.2, p. 64]. | 
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We use the terminology introduced in [A, Definition 3.3]. Let X be a stationary 

G-process. Let A1, . . . ,  A~ be a disjoint e-quasi-tiling system. Let A1,...,-4,,, be 

a disjoint e-quasi-tiling of some set K by right translates of A1, . . . ,  Ak. For 

p = 2 , . . . , m ,  let 

JDp : =  .Z~ 1 U . . .  U .z~p_ 1. 

A configuration ~ E C(Xpp) is called a p-past,  and its weight is defined to be 

7~,[Apl/IKI, where, as usual, 7~, := Pr[Xp, = ~]. T h e  r e m a i n d e r  w e i g h t  is 

defined to be 
R : =  u . . .  u a,,,)l 

IKI 
A pas t  is a p-past for some p. 

Let P be a property of pasts. The naive weight of  P is the sum of the weights 

of the pasts for which P holds. The weight of  P is the sum of IA11/IKI and the 

n~ve weight of P. (We are making the convention here that the set of 1-pasts is 

empty and has weight [Am [/[K[ and that any property holds for all 1-pasts.) We 

say that P holds for ~-a.e. pas t  if the weight of P exceeds 1 - &  Similarly, if P 

is a property of p-pasts, then we say that P holds for 8-a.e. p-past  if the weight 

of P exceeds (1 - ~)Wp, where W v denotes the total weight of the p-pasts. If tr 

is a p-past, then we will frequently denote Av by .4~. We use X ~- to denote the Aa 
conditional process XAp IXpp = ¢, i.e., to denote the process XA~ conditioned on 

Xp, = a. 

Definition 3.4: Let A1, . . . ,Ak be a disjoint 6-quasi-tiling system for G. As- 

sume K C G is disjoint 5-quasi-tilable ([A, Definition 3.3]) by right translates 

-41,..-,-4m of A1, . . . ,  Ak. Let X be a K-process. Then we say that the ordered 

disjoint quasi-tiling fi-1 ,-4m is (5, Fo) -VWB if: for/~-a.e, past a, X ~- and ' ' ' "  A¢ 
XAo are (~, F0)-close in entropy and finite distribution. 1 

It is interesting to note that the next result does not require X to be Very 

Weak Bernoulli. Thus, all ergodic processes have a certain amount of Very Weak 

Bernoulliness to them. 

THEOREM 3.5: Let X be an ergodic, stationary G-process. Let g > 0 and 

let Fo C_ G be finite. Then any F¢lner family .T contains a disjoint 8-quasi- 

tiling system A1 , . . . ,  Ak such that, for every sutticiently invariant K C_ G, there 

exists an ordered (5, Fo )-VWB disjoint quasi-tiling of K via right translates of 

A1, . . . ,Ak .  
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Proof." Replacing 8 with min{8,1/2}, we may assume that 8 < I. Let H := 

H(X) denote the entropy of X. 

Choose A > 0 such that 

(A1) A + (8A/8) < 6/16. 

Since 6 < 1, it follows that 

(A2) 3A < 8/2. 
By the Shannon-McMillan Theorem (Theorem 3.3) and by the definition of 

entropy [A, Lemma 3.5], we may choose t/1 > 0 and F1 C G finite satisfying: if 

L C G is (F1, Th)-invariant (defined at the start of [A, §3]), then 

H(XL) -- HILl I < (aa/256)lL]; and (t31) 

(132) for A2-a.e. a • C(XL): HILl(1 + A ) - '  < - log2  Pr[XL = a] < HILl(1 +A ). 
I 

For A C_. G finite, let T~(A) denote the collection of all a • { + 1 , - 1 }  A such 

that d(Avg(a), XFo) < 8/2. By the Mean Ergodic Theorem (Theorem 3.2), for 
F0 

all sufficiently invariant A _C G: 

Pr[XA • R(A)] > 1 - (62/16). 

Let Jr1 denote the F¢lner family of all A E Jr such that 

(C1) Pr[XA e 7~(A)] > 1 - (62/16); 

(C2) A is (Fl,rh)-invariant; and 

(ca)  I < A I A  I. 
We may choose a disjoint a-quasi-tiling system A1, . . . ,  Ak E ~'1 [A, Lemma 

3.4]. If two of the Ais are right translates of one another, then we may eliminate 

one of them; we may therefore assume that A1,...,Ak is reduced. Then the 

( A , , . . . ,  Ak)-correspondence (see Definition 1.3) is well-defined. 

Let K be sufficiently invariant that there exists a disjoint (8/2)-quasi-tiling of 

K by right translates fi~l,-.., A,~ of A1 , . . . ,  A~. It suffices to show, for 8-a.e. past 

a, that 

(D) d(Avg(Xiq),Xfo) < 6; and 
s O  

(E) IH(X~,,) - H ( X ~ ) I  < 61~LI. 
If R := [g\(¢i l  U . . .  U fi*,n)[/[K[ denotes the remainder weight, then, by defi- 

nition of a disjoint (~5/2)-quasi-tiling ([A, Definition 3.3]), we have R < g/2. 

Define Hi := H(XA, )/[ft, t. For p = 2 , . . . ,  m, define Pp := ¢il U- - .  U Ap-1 

and Hp := g(xAplXp~)/lfilpl. Let So be the set of all p E {1, . . .  ,m} such that 

Hp > H - (62/32). Let 17d := Zil 13... t2,4m. 
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By (C2), for all p = 1, . . .  ,m, "4v is (F1, ql)-invaxiant, so, by (B1), we have 

H(XAp) 
Hp < IAp~ < H + (63/256). 

As l~d is (F1, ~l)-invariant, we conclude from (B1) that 

H(Xcv ) > [H- (5U256)]I¢¢I. 

By standard properties of entropy, 

H(Xw) = ~Hp]i,]= Hplip] + ~ Hp[i,] . 
p=l pf~So 

Combining these last three observations, we have 

Using E I1,] -< ]WI, and solving for ~ I~ipl, we find 
p6s0 pf~So 

I i p l  _< ( 3 2 / 5 = ) [ 2 ( 5 3 / 2 5 6 ) 1 v ¢ 1 ]  = ( 5 / 4 ) 1 w I .  
p~S0 

Since [1 - R][1  - ( 6 / 4 ) ] [ 1  - ( 6 / 4 ) ]  > [1 - ( 6 / 2 ) ] [ 1  - ( 5 / 4 ) ]  5 > 1 - 6, it  s u m c e s  t o  

show, for all p 6 S0\{1}, that: 

for (5/4)-a.e. p-past a: both (D) and (E) hold. 

So fix some p 6 So\(1}. Recall that if a is a p-past, then A~ := Ap. It suffices 

to show that 

(F) for (6/8)-a.e. 7 p a s t  a: ~(A~_g(XL),XFo) < 6; and 
* o  

(G) for (5/8)-a.e. p-past a: IH(X~  ) - H ( X A , ) I  < 51~1. 
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Since X is stationary, we see from (C1) that Ap • .T implies 

Pr[X~i, • 7 ~ ( . 4 p ) 1  > 1 - (62116) = 1 - ( 6 / s ) ( 6 / 2 ) .  

Thus, for (6/8)-a.e. p-past a, 

P r [X] ,  • n(.4p)] > 1 - (6/2). 

Then, by definition of T~(.4p), for (6/8)-a.e. p-past a, 

d(A~g(X], ) ,Xfo)  < 6/2 + (1 - 6/2)(6/2) < 6, 

verifying (F). 

Define ]5 := pp, A := Ap. By (C2), A is (F~, T h)-invariant, so, by (B2), 

(H) for A2-a.e. r • C(XA): Pr[X A = r] > 2 -HIAI¢I+~). 

Then there exists a subset Co C_ C(X A) such that 

(I1) ]Col < 2nl'~lO+~); and 

(I2) Pr[X A • C01 > 1 - A 2. 

By (I2), we have 

(J) for A-a.e. O" • C(Xp): Pr[X~ • C0] > 1 - A. 

By Lemma 2.3 and by (I1), for all a • C(Xp), 

H(X~IX~ • Co) <_ HIAI(1 + A), 

H(X~4]X ~ ~ Co) <_ [-4[. 

By standard properties of entropy, these two estimates and (J) imply that: for 

A-a.e. a • C(Xp), 

H(X~4 ) < [H].4](1 + A)](1 - A) + [[.4[]A + 2. 

By (C3), 2 < 2Al-41; further, (1 + A)(1 - A) = 1 - A 2 < 1, so we obtain 

(K) for A-a.e. a E C(Xp): H(X~t ) < (H -{- 3A)IAI. 
Define 

C, := {a E C(Xp) lH(X•) > [g + 3A1[.41} , 

C2 := {a E C(Xp)[H(X~4 ) <_ [g - (6/2)]]A]}, 

A1 := Pr[Xp E C1], 

A2 := Pr[Xp E C2]. 

By nemma 2.3, H(X]) < IAI, for ~dl ~ • C(Xp). 
Since p • So, we have 

[ H -  (62/32)][,4.[ < H(X~[Xp) = E H(X~)Pr[Xp = a]. 
~EC(Xe) 
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Breaking this sum into ~ + ~ + ~ ,we obtain 
aEcl .Ec2 .~ctuc2 

[H - (52/32)][A1 < IAI~, + [n - (~/2)]I~ilA2 + In + 3A]IAI(I - A, - A~) 

_< ]A[A, +/-/[A[A2 - (6/2)]A]A2 + HIA[(I - A2 - 0) + 3A[A[(I - 0 - 0) 

Dividing by [A[ and subtracting H = HA2 + H(1 - A2), we have 

-62/32 < A, - (*/2)A2 + 3A. 

Solving the estimate above for A2 gives A2 < (2/*)[(,2/32) + A1 + 3A]. By (K), 

we see that A1 < A, so 

Pr[Xp ~ C, U C2] = A, + A2 < A + (2/6)[(62/32) + 4A] = [A + (8A/~)] + (6/16). 

So, by (A1), Pr[Xp E C~ U C2] < ~/8. By definition of C1 and C2, we conclude, 

for ((~/8)-a.e. a E C(X#), that 

In - (~12)]l-~I < n(X~.) < (n + 3A)IAI. 

By (A2), 3A < ~/2, so: for (~/8)-a.e. a E C(Xp), 

In<x )- n, ,l < 
Now, by (C2), .,i is (F1,7/1)-invariant, so, by (B1), 

]HIAI- tt(Xa) I < ('a/256)lAI. 

Since 6 < 1, we have 63/256 < ($/2, so the last two displayed estimates imply: 

for (*/8)-a.e. a ~ C(Xp), 

In(X~) - n (Xa) l  < alJ, I. 

But .4 = .4p = ),~ and/5 =/sp, so this verifies (G). I 

LEMMA 3.6: Let X be a stationary G-spin system. Assume, for all t > O, 

that there exists a disjoint t-quasi-tiling system A1,. . . ,  Ak such that: ]'or every 

su~ciently invarlant K C_ G, there exists an ordered disjoint E-quasi-tiling of 
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i l , . . . ,  im of K such that for e-a.e, past a, d(X~ , XA.)  < e. Then X is Very 

Weak Bernoulli. 

Proof." Given e > 0, we try to verify the condition of Definition 3.1. Choose 

0 < 6 < 1 such that 

6 + v q <  e. 

Replace all "e"s by "6"s in the hypothesis of Lemma 3.6 and choose A1 , . . . ,  Ak, 

K,  and -/~1,..., fi-,~ as described. Then, for 6-a.e. past a, d ( X ~ ,  XA,) < 6. 

For p = 2 , . . .  ,m,  define/bp := i l  U . . .  U Ap-1; if a is a p-past, let P~, := 

Pr[XAp ---- a]. Let I denote the set of all 1 < p < m such that: for x/~-a.e, p-past 

a, d ( X ~ , X A ,  ) < 6. Then tp iip > (1 - V~)IK[ > (1 - e)[g[. 

We c la im that, for all p 6 I,  the process Xap is e-process independent of 

Xpp. So fix p 6 I. Let C := C(XAp), let C1 denote those a 6 C such that 

d(X~p, XAp) < 6. By definition of I,  E p~ > 1 - v/~. Therefore, by [A, Lemma 
aECt 

2.6], 

dp,(Xp, V XA,,Xp, llX~,) = ~ 7%d(X~,,X~,) 
crEg. 

= Z + < (1)(6/+ (v%(11 < e. 
aEC~ aEC\Cl 

This proves the  claim, by definition of e-process independence ([A, Definition 

2.8]). 

Now let 1~,.  -' .. . . , A  m, be the ordered list of sets obtained from i i , .  , i,,~ by 

eliminating those i p  for which p ~ I. Then 

- '  (1 - e ) l K t .  1i'1 U . . . U A m ,  [ > 

By [A, Lemma 2.14], for all p = 2 , . . .  ,m' ,  the process XA~ is e-process indepen- 

dent of Xp;, where/5~ := .~  U . . .  U 1'p_1. I 

We can now state and prove the main theorem of this paper. 

THEOREM 3.7: Let X be a stationary G-process. Then X is Very Weak Bernoul// 

if  and only if X is Finitely Determined. 

Proof: The proof that Very Weak Bernoulli implies Finitely Determined is al- 

most the same as the proof of [A, Theorem 4.2]. The main difference is that 
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statement (C) of the proof should be changed to say: "there exists an ordered 

disjoint e-quasi-tiling of Bp by right translates of A1 , . . . ,  Ak which is e-almost in- 

dependent under X."  (See Definition 3.1.) We eliminate statements (E) and (I). 

By the new version of (C), we may choose the traversal C1 , . . . ,  Ct of the proof 

in such a way that: if Cp,. . . ,  Cq is a block with union B, then Cp,. . . ,  Cq-1 is 

an ordered disjoint e-quasi-tiling of B which is e-almost independent under X. 

This insures that statement (W) remains true. The rest of the proof remains 

unchanged. 

We now turn to the proof that Finitely Determined implies Very Weak Ber- 

noulli. Assume that X is a Finitely Determined, stationary G-process. Let e > 0 

be given. We will verify the condition of Lemma 3.6, for this e. Choose 6, F0 as in 

Theorem 2.8; replacing 5 by the minimum of ~ and e, we may assume that 5 < e. 

Let 9 v denote the F¢lner family of all finite K C_ G for which the conclusion of 

Theorem 2.8 holds. Note that, by [O-W, Theorem 8, p. 93], X is isomorphic 

to a Bernoulli process and is therefore ergodic. Choose A x , . . . , A k  E ~" as in 

Theorem 3.5. Choose K sufficiently invariant that the conclusion of Theorem 

3.5 holds. Consequently, there exists a (6, F0)-VWB ordered disjoint quasi-tiling 

-~1, . . . ,  fi'm as in Definition 3.4. Note that each .Ap is a right translate of some 

Ai, s o  AI,.  • • ,-4m E ~ .  Then, for 5-a.e. past a, X CAs and XA. are (5, F0)-close 

in entropy and finite distribution. Since 5 ~ e, and since 6, F0 were chosen as in 

Theorem 2.8, we conclude that: for e-a.e, past, d ( X ~ ,  XA~) < e. This is exactly 

what was needed to complete the hypotheses of Lemma 3.6; we conclude that X 

is Very Weak Bernoulli. | 
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